Tips on how to Solve: Hardy Weinberg Problems

Remember to use the two equations:	p + q = 1	&	$p^2 + 2pq + q^2 = 1$	
Remember what the variables represent:	p = dominant A	ALLELE		Α
	q = recessive ALLELE		а	
	 p² = homozygous dominant GENOTYPE 2pq = heterozygous GENOTYPE q² = homozygous recessive GENOTYPE 			AA
				Aa
				aa

In a population of 130,000 magical mice, green fur is dominant over orange. If there are 300 orange mice in a population of 130,000, find the following (assume population is in Hardy-Weinberg equilibrium)

STEP 2: Calculate "q"

so....we assigned 'p' to be the frequency of **"G"** (green allele) we assigned 'q' to be the frequency of **"g"** (orange allele)

The key is ALWAYS to try and find what 'q' frequency is...

We know orange fur is a recessive trait (needing **TWO** alleles "aa") 300 out of 130 000 are orange

*** IS "q²" NOT "q" ***

```
q<sup>2</sup> – 300 / 130 000 = .002
```

q - $\sqrt{.002} = .045$

```
р.
```

р² -

```
2pq -
```

STEP 3: Calculate "p"

```
Once you know what "q" is, then "p" is easy to calculate
```

ALL YOU DO IS SUBTRACT IT FROM 1 – (because "p" and "q" must equal 1)

```
q^{2} - 300 / 130\ 000 = .002

q - \sqrt{.002} = .045

p - 1 - .04 = 0.955

p^{2} - 2pq - 2
```

STEP 4: Calculate remaining GENOTYPES

```
Now you know what "p" and "q" are. Solve the rest
```

```
q^2 - 300 / 130\ 000 = .002

q - \sqrt{.002} = .045

p - 1 - .04 = 0.955
```

```
p<sup>2</sup> - .955 X .955 = 0.912
```

2pq – 2 X .045 X .955 = 0.086

STEP 5: Calculate numbers of individuals ***ITS LIKE CALCULATING GST***

We now know ALL the frequencies of alleles and genotypes.

If the question asks you how many individuals are homozygous recessive you

would:

Multiply the number of individuals by the frequency... 130000 X .002 = 260 individuals

If the question asks how many individuals are green you would

<u>ADD the green frequencies (AA and Aa)</u> and multiply by the number of individuals **130000 X (.912_.086) = 129740 individuals**

 $q^2 - 300 / 130\ 000 = .002$ $q - \sqrt{.002} = .045$ p - 1 - .04 = 0.955 $p^2 - .955\ X .955 = 0.912$ $2pq - 2\ X .045\ X .955 = 0.086$

REMEMBER: Aa and AA will produce the same phenotypes (GREEN)

The Greatest Concern Students Have

How do we know which number is q², q, p , p² and 2pq in the problem? PRACTICE and EXAMPLES

Examples:

- -20% of a population is homozygous recessive.....use 0.20
 -Orange is a recessive trait and 30 out of 75 are orange..... 30 / 75 = 0.4
 -Green is a dominant trait and 16 out of 20 are green..... 4 / 20 = 0.20
- -tall is recessive to short and the tall form of the gene occurs in 30% of the population... **use .30** -the recessive allele appears in 40 out of 46 individuals... **40 / 46 = 0.87**
- -green is recessive to yellow, yellow has a frequency of 0.97... use .97
 -the dominant allele appears in 20 out of 32 individuals... 20 / 32 = 0.625
 - -Red flowers are dominant to yellow. The homozygous dominant frequency is 0.48...use 0.48
 -80% of flowers have a homozygous dominant genotype...use .80
 - -these individuals are CARRIERS...
 -these individuals are heterozygous

2p

A population of cats can be either black or white; the black allele has complete dominance over the white allele. Given a population of 1,000 cats, 840 black and 160 white, determine the allele frequency, the frequency of individuals per genotype, and number of individuals per genotype.

STEP 1: ASSIGN THE ALLELES

- STEP 2: Calculate "q"
- STEP 3: Calculate "p"
- STEP 4: Calculate remaining GENOTYPES
- STEP 5: Calculate numbers of individuals

q² = .16 : 0.16 x 1000 = 160 white q= .4 p = .6 p² = .36 : 0.36 x 1000 = 360 black 2pq = .48: 0.48 x 1000 = 480 black