PERSONALS: ♀ FF, Se/E/Dp, seeks ♂ FF, +/+/+ for short term relationship. Enjoys romance, fermentation, and long walks on the peach...

Chromosomal Theory

- Chromosomes carry genes units of heredity
- Homologous chromosomes segregate during meiosis
- Gametes carry half the number of chromosomes as somatic cells
- Chromosomes assort independently during meiosis

Chromosomal Theory

So far we have been looking at genes on AUTOSOMAL chromosomes (pairs 1 – 22)

But what happens if the trait (gene) is found on the X chromosome (in pair#23)?

Females have XX but..

Males have XY

-what does this mean if a trait is on the X chromosome and males only have 1?

Gender and Inheritance

- Breakthrough work done by Thomas Hunt Morgan
 - American Geneticist
- 1908 Work on fruit flies (Drosophila melanogaster) provided deeper understanding of heredity based on sex

Drosophila melanogaster

OK! WHY FRUIT FLIES? Good Question!

Ideal for genetic experiments for several reasons:

- Rapid life cycle (10-15 days)
- Hundreds of eggs at one time
- Crossing experiments can be repeated many times
- Offspring mature quickly
- Males/females different
- Small
- Markedly contrasting traits
- Only 8 chromosomes (4 pairs)

Chromosomes in Fruit Flies

- Morgan found the following:
- Females had 4 homologous pairs of chromosomes:
 - 3 autosomal pairs, one sex pair
 (XX)
- Males only had 3 homologous pairs:
 - 3 autosomal pairs
 - Sex chromosomes were not homologous
 - one X and one Y (XY)

Eye Color In Drosophila

- Let R = red, r = white
- Assume these alleles are found on the X chromosome only
- Let's look at 2 crosses

$$-2.X^{R}X^{r} \times X^{R}Y$$

First Cross

1. XRXR X XrY Xr XR Xr XR Xr Y XRY XRY

female with RED eyes male with RED eyes

Second Generation (F1 Cross)

2. XRXr X XRY

RESULTS

- 2 RED females
- -1 RED male
- 1 WHITE MALE

The white male has NO RED EYE COLOUR which means eye color is sex linked (on the X)

Morgan's Conclusions

- Genes controlling eye color must be on X Chromosome
- Y does not carry gene for eye color
- Males cannot be heterozygous for X- linked traits (eg. no X^RY^r or Y^R)

Female	Male	
X ^R X ^R	XRY	
X ^R X ^r	X ^r Υ	
X ^r X ^r		

Traits controlled by genes carried on Y chromosome only affect males

Sex-linked traits

Autosomes: chromosomes #1-22

Sex chromosomes : chromosome #23

Sex linked traits are controlled by genes on the sex chromosomes

- Sex-linked traits are almost always on the X chromosome
 - Y chromosome is for

sex determination

 Sex linked traits occur more in males than females because males have only one X chromosome (what it says, goes...)

MALE - Sex-linked traits

- are either affected by x-linked traits, or are not affected at all
- can NEVER be carriers
- always inherit their X-linked traits from their MOTHER

NOTE: Dad ALWAYS gives sons his Y chromosome

 The y chromosome is small and contains mostly gender information.

Possible Map of Male Y chromosome?

SRY-sex determining region on Y

```
(SRY)
-Testis Determining Factor (TDF)
-Gadgetry (MAC-locus)
Channel Flipping (FLP)
-Catching & throwing (BLZ-1)
 Self-confidence (BLZ-2)(note: unlinked to ability)
 Ability to remember and tell jokes (GOTCHA-1)
~Sports page (BUD-E)
-Addiction to death and destruction movies (T-2)
'Air guitar (RIF)
Ability to identify aircraft (CD10)
-Preadolescent facination with Arachnida &
                     Reptilia (MOM-4U)
 Spitting (P2E)
Sitting on john reading (SIT)
-Inability to express affection over the phone (ME-2)
Selective hearing loss (HUH?)
Total lack of recall for dates (OOPS)
```

FEMALE - Sex-linked traits

- CAN have dominant/recessive allele interactions on X chromosomes
- CAN be carriers (heterozygous)

(carrier: has the gene but it does not surface)

always inherit one X from Mom, and one X from dad

Question: Cross a red eyed female (heterozygous) with a white eyed male.

Legend

Red eye = R White eye = r Male = XY Female = XX

Parent Genotypes XRXr X XrY

1 Red female, 1 Red male, 1 White female, 1 White male

Examples of Sex-Linkage in Humans

- Color Blindness
 - genes for visual pigments responsible for perception of red and green are found on the X chromosome

Can you see what number this is?

More colorblind tests

Color blindness in males and females Caused by gene carried on X only

- Female Genotypes:
 - X^NX^N normal female
 - X^NXⁿ carrier female
 - XⁿXⁿ colorblind female

- Phenotypes:
 - Normal or colorblind
- NO: is a
 Will the carrier "N"(normal)
 be colorblind?

- Male Genotypes:
 - X^NY normal male
 - XⁿY colorblind male
- Phenotypes:
 - normal and colorblind
- Can males ever be carriers?

(carrier: has the gene but it does not surface)

NO. BUT: colorblind man can pass color blind gene to daughter "X" but not to son as son gets a "Y" from father

Hemophilia

- Trouble clotting blood
 - caused by the lack of a blood protein, called Factor VIII, that is critical for blood clotting
 - Gene for Factor VIIIon X Chromosome
- Occurs more in boys than girls

- Girls: X^hX^h = affected

X^HX^h = carriers

X^HX^H = unaffected

- Boys: $X^{h}Y$ = affected $X^{H}Y$ = not affected

Other Gender Related Inherited Traits

Sex Limited

- Only expressed in one sex
- Ex. Milk production in cows is controlled by a gene
- Bulls carry the genes...
- But they do not make milk!
- So they do not express the gene

Sex Influenced

- More common in one sex than the other
- Ex. Baldness is influenced by male hormones
 - testosterone
- Gene is Dominant in males
- Recessive in females
- More common in males

Gene Linkage

- <u>Linked Genes</u> are genes that are found on the same chromosome are <u>LINKED</u>
- Linked genes are inherited TOGETHER.
- Genes will NOT separate during meiosis...

CROSSING OVER occurs

Linked Genes

- Chromosome "13" (first copy):
 - -----d
- Chromosome "13" (second copy):
 - ------C-------D
- When separated during meiosis:
 - One gamete gets a,b,c,d
 - One gamete gets A,B,C,D

- What happens if cross over occurs between B and C?
 - One gamete gets a,b,C,D (recombinant)
 - One gamete gets A,B,c,d (recombinant)
- Finding frequency of recombinants indicates amount of crossing over

Gene Mapping

- A linear map of genes on a chromosome
- Derived using COF's (Cross Over Frequency)
- Distance affects Cross over Frequency
 - Further apart the genes...higher the COF
 - Closer the genes...lower the COF

Bozeman: genetic Recombination and Gene Mapping Video 9:49

https://www.youtube.com/watch? v=TU44tR0hJ8A

Cross over frequency = Map distance

TAKE HOME MESSAGE:

- •Genes that are further apart:
 - more likely to cross over (separate)
 - less likely to be inherited together

- Genes that are closer together:
 - less likely to cross over (separate)
 - more likely to be inherited together

Gene Mapping

- Cross over frequency can be expressed in map units
- -1% crossing over = 1 map unit -50% crossing over = 50 map units

The larger the map unit the more common (higher frequency) that crossing over occurs thus genes are further apart on chromosome

(eg) two genes crossover percentage of 1%(1 map unit) are closer together than two genes of 12%(12 map units)

Gene Mapping

1 rule for chromosome mapping:

START WITH THE GENES
THAT ARE FURTHEST APART.

Chromosome Map

Location of genes on the chromosome

Values are in map units

How far apart are genes B and E? 24+28+22=74mu

The Houses on Main Street

- Arnold lives 12 doors away from Beth
- Carlos lives 11 doors away from Deanna
- Beth lives 3 doors away from Carlos
- Arnold lives 4 doors away from Deanna and
 15 away from Carlos

In what order are the houses on the street?

Beth	Arnold	Deanna	Beth	Carlos
	l	I		
12	0	4	12	15

 T. H. Morgan collected the following cross over frequencies from data with Drosopila.

B = bar shaped eyes.

C = carnation eyes.

FV = fused veins.

S = scalloped winged.

They are all on the same chromosome.

Use the crossover frequencies to plot a gene map.

Construct a Chromosome Map Using the Following COF's

